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Recent Developments in -Lactone Synthesis 
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Abstract: In recent years, several classes of biologically active molecules containing the -lactone ring, pesticides, plant and fungal 
growth inhibitors, and antibiotics have been found. Thus the synthesis of substituted dihydrofuran-2(3H) ones is a continuously develop-
ing area. Few general synthetic approaches to their stereoselective synthesis with broad structural variety are known. This article reviews 
the latest developments in the synthesis of -butyrolactones. We focus on the ring-closing steps and pay special attention to how different 
authors obtain the correspondent 4-hydroxycarbonyl compound; an acyclic synthon for the -lactone ring. 

1. INTRODUCTION 

-Lactones are widely distributed in nature; this moiety is pre-
sent in around 10% of all natural compounds. Most display a broad 
biological profile including strong antibiotic, antihelmetic, antifun-
gal, antitumour, antiviral, anti-inflammatory and cytostatic proper-
ties which make them interesting lead structures for new drugs [1]. 
Given their widespread occurrence in nature and their broad range 
of biological activity, a great deal of attention has been paid to the 
synthesis of this ring (for example, see some of the most recent 
reviews [1-3]). 

In many cases, an methylene group in the lactone ring, which 
is potentially able to blind the nucleophilic sites of biomolecules by 
conjugate addition, manifests its own biological activity [4]. To 
avoid this review from becoming too lengthy, we have excluded the 
synthesis of - or -methylene- -lactones and butenolides (Fig. 1), 
which deserve a review of their own. 

 

 

 

 

Fig. (1). More common hydrofurans derivatives in natural products. 

Therefore, this is a review of the new or improved methods de-
veloped in the last ten years for constructing -lactone rings. 
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2. -LACTONES FROM RING TRANSFORMATION 

This review, with recent developments in the synthesis of -
lactones, will focus on ring-closing methods. However, we will 
begin with some methodologies based on the transformation of five 
already built member rings. 

The synthesis of -lactones from butenolides by catalytic hy-
drogenation is a common method. Quiral catalysts for enatioselec-
tive hydrogenation have been the focal point of most research 
works conducted in recent years [5-10]. 3-Halo or 3-phenylselenyl 
butyrolactones can be reduced by nickel chloride/sodium borohy-
drides to lead to the removal of the halide or phenylselenyl group 
[11]. 

Brückner et al. [12] described a new application to the synthesis 
of 4-carboxy- -lactones from butenolides by employing Li-
C(SMe)3 and MeI to obtain the 4-[tris(methylsulfonyl)methyl] de-
rivative which, under a Lewis acid-assisted hydrolisis with Hg (II), 
led to the carboxy group (Scheme 1). In all cases, a trans selectivity 
was observed with very high yields (>90%). 

On the one hand, -Lactones can be obtained from succinic an-
hidrides by reduction with NaBH4 or Li(t-BuO)3AlH, but the re-
gioselectivity of the process cannot be controlled [13,14]. 

On the other hand, Yoshimitsu et al. [15] described an oxida-
tion process to obtain -Lactones from tetrahydrofuran derivatives. 

They used ruthenium tetroxide under modified Sharpless conditions 
to obtain moderate results. The oxidation of -lactols is also a usual 
procedure for -lactones and one of continuous use [16]. 

Diastereoselective Diels-Alder cycloadditions of masked o-
benzoquinones with furans (either racemic or homochiral) lead to 
highly functionalized tricyclic heterocycles which can be trans-
formed into tricyclic -lactones by oxidation with NaIO4 (Scheme 
2). High yields are described in all cases [17]. 

 

 

 
Scheme 1. f 4-carboxy- -lactones. 
 
 
 
 
 
 
 
 
 

Scheme 2. Diels-Alder cycloaddtion-oxidation tandem in the synthesis of -lactones from furans. 
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3. -LACTONES FROM C-C BOND CYCLIZATION 

Two main synthetic approaches can be found in the literature 
for the synthesis of the -lactone ring: cyclization by either C-C or 
C-O bond generation. Although the latter is more common, some 
methods relying on C-C bond formation can be emphasized. 

Only two references have been found for C4-C5 bond genera-
tion in the cyclization process. 1,5-Electrocyclic ring closure reac-
tion of carbonyl ylides from conjugated esters and diazo bis (car-
bonyl) compounds offers an easy and highly efficient method for 
the preparation of polyfunctionalized -lactones (Scheme 3) [18]. 
Michael addition of chiral dioxolanones to , -unsaturated methyl 
esters gives 3,4-disubstituted- -lactones with high enantiomeric 
excess [19].  

The remaining references concerning C-C bond generation fo-
cus on the formation of the C3-C4 bond. 

Naito et al. [20,21] applied a novel tandem radical addition-
cyclization of oxime ethers and hydrazones that are 
intramolecularly connected with an , -unsaturated carbonyl group 
(Scheme 4). A diastereoselective study was described. These 
authors described a similar procedure by sulfanyl radical addition-
cyclization of dienes connected with hydroximates [22]. -lactones 
were effectively derived from hydroximates by either hydrolysis or 
oxidation. This method was successfully applied to the practical 
synthesis of (±)-oxo-parabenzlactone. Similarly another example 
was the Cu(I)-catalyzed intramolecular [2+2] photocycloaddition of 
1,6-dienes in which two alkane units were ethered through acetal 
oxygen [23]. The resulting bicyclic lactols were then oxidized to -
lactones by Jones reagent in a moderate overall yield. 

Anionic or radical cyclizations from synthons A (Fig. 2) have 
already been described. Unsaturated malonyl esters underwent Pd-
catalyzed intramolecular allylic alkylation to give 4-vinyl- -
lactones [24]. The reaction could be achieved with a substrate by 
incorporating a judiciously positioned silicon moiety (Z=SiEt3). -
Ketoesters successfully provided fused cyclopropane- -lactones by 
Mn(III)-mediated oxidative cyclization [25,26]. These cyclopro-
pane- -lactones were also accessible from allyl diazoacetates with 
some copper (I) or dirhodium (II) catalysts [27,28]. The Grubbs 
catalyst can be used for a metathesis cyclization process in the syn-
thesis of Rollicosin [29], and to also promote atom transfer radical 
cyclization from trichloroacetic esters derivatives [30]. Martín et al. 
[31,32] described a base-induced cyclization of enantiomerically-
enriched -[(phenylthio)acyloxy]- , unsaturated esters to obtain 
highly substituted butyrolactones with a high degree of sterocontrol. 

, -Difluorinated- -lactones are accessible via their corresponding 
lactols, and likewise, with a highly steroselective radical cyclization 
promoted by tributyltinhydride [33].  

 

 

 

 

 

Fig. (2). Different synthons for anionic or radical cyclizations. 
 

Bromoallylicacetals give lactols in the same way with a highly 
stereoselective radical cyclization [34]. In both cases, oxidation to 
-lactones is performed by traditional processes. Mehta et al. [35] 

developed a synthesis of xanthonoid natural products via tandem 
Wessely oxidation-intramolecular [4 + 2] cycloaddition. They used 

, -unsaturated esters from an oxidate aromatic system with the 
Diels-Alder cyclization protocol to lead to tricyclic lactones. As a 
final example in this group, we have included a Lewis acid-
promoted cyclization of heteroatom-substituted enynes to obtain 
halogenated y-lactones. Cyclized products are highly substituted by 
the silyl and phosphonate groups, and are suitable for further elabo-
ration [36]. 

4. -LACTONES BY C-O BOND CYCLIZATION 

Most of the methods for the synthesis of -lactones use this syn-
thetic approach. 

These procedures can be subclassified in accordance with the 
acyclic building block required to build the adequate number of 
atoms for ring generation. Thus, -lactones are cyclized by the C-O 
bond formation either from a C4 building block or after a previous 
generation of the C4-C5, C3-C4 or C2-C3 bond. This chapter is 
arranged accordingly. 

4.1. -Lactones by C-O Bond Cyclization from a C4 Building 

Block 

The most common method for -lactone rings from a preformed 
hydrocarbonated chain starts from an acid derivative with an X 
group in the -position (Scheme 5). In the last ten years, some ap-
plications of this methodology have been published. Cyclization 
from -hydroxyacids by acid [37-40] or enzimatic [41] treatment 
was used for the synthesis of several natural products. 

 

 

 

Scheme 5. General procedure for cyclization by C-O bond formation from a 
C4 building block. 

 

 

 

 

Scheme 3. -lactones via 1,5-Electrocyclic ring closure. 

 

 

 

Scheme 4. Tandem radical addition-cyclization of oxime ethers. 
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Recently, this methodology has been applied: with O-chiral 
protected derivatives to obtain pure enantiomeric products [42,43], 
and in synthesis of natural products [44-46]. Three approaches are 
referenced from -haloacids: from -brominated benzoic acids the 
cyclation was optimized by using CsF-Celite as a solid base giving 
good yields [47], from -iodoacids in fluorinated substrates it was 
optimized by aqueous sodium carbonate [48] or triethylamine [49]. 

Similarly, some references for the cyclization step from -
hydroxyesteres or -hydroxy-protected groups in acid medium are 
found either in solution [50-61] or in solid-phase [62] synthesis. 
Most of these papers focus on studies into the stereoselective build 
of synthons to perform the cyclization process. All the efforts centre 
on obtaining chiral -lactones which have an important biological 
activity. 

Reiser et al. [63-66] developed an interesting methodology for 
-lactones cyclization based on a retro aldol-lactonization sequence 

from a cyclopropane synthon (Scheme 6). This methodology was 
applied to the synthesis of several natural products and obtained 
excellent results. 
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Scheme 6. Retroaldol/lactonization cascade. 

Satoh et al. [67-72] developed a lactonization process from -
chloro esters in acid medium. These substrates were obtained from 
optically active 1-chlorovinyl-p-tolyl sulfoxide by conjugate addi-
tion of a lithium enolate. Good yields and an elevated enantiomeric 
excess were found, and an exhaustive study was presented. 

Several authors have used epoxyesters as substrates for lactoni-
zation. , -Epoxyesters were treated with thiophenol to afford -
phenylsulfonyltrisubstituted- -butirolactones. A diastereoselective 
study about the epoxidation process and cyclization are shown 
[73,74]. , -Epoxiesters were used by Concellón et al. [75] in an 
intramolecular ring opening of the epoxide with the carboxylate 
group (Me3SiCl/NaI/ ) at the most favoured position, leading to -
hydroxy- -butirolactones with moderate yields (58-60%). , -
Epoxiesters were recently used for the synthesis of  lactones by 
the tandem epoxide opening-cyclization reaction mediated by sa-
marium (II) diiodide with excellent yields [76]. , -Epoxiacids are 
cyclised to -lactones by acid treatment: HClO4 [77], BF3-Et2O [78] 
or ZnCl2 [79]. In the last paper, a study on the stereochemistry con-
trol is shown. The regiochemistry of the reaction is governed by the 

cis or trans nature of the starting epoxyacids, whereas a mechanistic 
hypothesis involving an oxocarbenium ion as a common intermedi-
ate is presented in the interpretation of the results. 

Amides, as acid derivatives, are also used as starting materials 
for the cyclization process. Some new applications have been de-
veloped from the -hydroxy- or the -hydroxy-protected group and 
are especially described for obtaining enantiomeric -lactones [60, 
80-82]. We can emphasize the oxazolinyl group [83], isoxazolidine 
[84], -lactones [85] and morpholinones [86,87] as protected ver-
sions of precursors of the target lactones. The enantioselective re-
sults indicate that these are very efficient methods. 

As usual, -hydroxynitriles can give -lactones by hydrolysis in 
an aqueous base followed by acidification. This was applied to the 
synthesis of (R)-4-hexanolide [88]. In a similar way, o-
alkylaromatic carboxylic acids can be converted into -lactones in a 
single step by using NaBrO3/NaHSO3 [89]. This reagent generates 
HOBr which delivers a Br-radical in the aqueous solution to give 
the brominated benzyl group which undergoes an intramolecular 
nucleophilic attack in the same medium. 

Khan et al. [90] synthesized -lactone-fused cyclopentanoids 
from tricyclic -ketohemiacetals through the -haloester function-
ality upon cleavage of the bond between the carbonyl and hydroxy 
group. Cleavage reaction conditions using Pb(OAc)4 or alkaline 
hydrogen peroxide gave good results. 

Another approach to the synthesis of -lactones from a C4 
building block is the use of a , -unsaturated acid as the starting 
material with acid treatment, which is another methodology used 
[91]. In some cases, no lactonization was obtained under such con-
ditions. Miura et al. reported that a silyl group at position 5 plays a 
crucial role in accelerating acid-catalyzed cyclization [92]. The 
difference in the geometry of the carbon-carbon double bond did 
not affect the reaction rate. 

Other authors have described the conversion of unsaturated ac-
ids to -lactones catalyzed by a treatment with DTSA/HClO4 in an 
isomerization-lactonization process [93]. Angelici et al. used the 
solid sulfanic acid catalysts Amberlyst-15 and Nafion SAC-13 for 
the same process [94]. The -Allylmolybdenum complex from , -
unsaturated carboxylic acids may also be the starting material to 
afford -lactones via the demetalation process. A diastereoselective 
study is included [95]. 

One of the most efficient methods for the cyclization to -
lactones is the halolactonization process, which is continuously 
applied [96-101], including via solid-phase conditions [102]. We 
emphasizse a new preparation of 3,5,5-trialkyl- -butyrolactones of 
a defined absolute configuration [103]. This method involves: di-
astereoselective alkylation of 3,4-ethylenic acids after incorporating 
Evan’s chiral auxiliary, separation of the two diastereoisomers, 
hydrolysis of the auxiliary and stereospecific halolactonization 
(Scheme 7). 
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Scheme 7. Alkylation-halolactonization sequence. 
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A mild and convenient method for polyfluoroalkylation use ei-
ther sodium bisulfite or sodium sulfite to initiate the reaction of 
polyfluoroalkyl iodides with 4-pentenoic acids [104-109]. A radical 
addition to the double bond is proposed to obtain 4-iodo-5-
polyfluoroalkyl derivatives which are cyclized to -lactones in the 
same step. 

Tunge et al. [110] demonstrated that diphenyl diselenide is an 
efficient catalyst for the halolactonization of unsaturated acids. 
Hydroxy selenenylation followed by ring closure was also studied 
[111,112]. The scope and limitations of this methodology are de-
scribed. Both electronic effects and the nature of the substituents 
are critical in the stereolectivity of the reaction. 

A special halolactonization was developed by Rudler et al. 
[113-116] which used bis(trimethylsilyl)ketene acetals with pyri-
dines, quinolines, isoquinolines or pyrazines as starting materials 
(Scheme 8). -lactones were obtained in a one-pot reaction with 
iodine or bromide treatment. The regio and diastereoselectivities of 
the addition reactions, together with the presence or absence of 
rotamers, were established. 
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Scheme 8. Bis(trimethylsilyl)ketene acetals in the synthesis of lactones. 

A different approach to -lactones from ,  or , -unsaturated 
acids is via symmetric dihydroxylation and cyclization [117-119], 
or via hydroxylation from a quiral oxazolidinone [120]. Important 
natural products are directly accessible in this way. An alternative 
route to obtain the hydroxyl group was developed by Evans et al. 
[121] from a reductive ozonolysis of the allylic system. 

Interestingly, a mild and efficient synthesis of fused tricyclic -
lactones mediated by manganese (III) and copper (II) was devel-
oped by Burton et al. (Scheme 9). Very good yields were described 
and a radical oxidative cyclization was proposed [122]. 

Another oxidative process with electrochemically-generated 
hypervalent iodine and -phenylpropionic acids was developed by 
Nishiyama et al. this year [123]. 

Alkylidene Meldrum’s acids have shown a direct entry into vi-
nyl-substituted -lactones by Pd-catalyzed intramolecular allylation 
with high stereocontrol [124]. A similar approach with hydroxy-
Meldrum’s acid derivatives was described previously [125]. 

One method which is always effective for -lactones cyclization 
is the reduction of -ketoacids or -ketoacid with NaBH4 or deriva-
tives [126-130]. Another reduction process may also be used, such 
as catalytic hydrogenation [131,132], selectride [133], SmI2 [134] 
or enzymatic reduction [135]. 

PhSCF2SiMe has been demostrated as a difluoromethyl carban-
ion synthon, which reacts with -ketoesters in the presence of a 
catalytic amount of TBAF to the -hydroxyalkylated product that 
undergoes cyclization in the same medium [136]. Some stereoselec-
tive studies in this area have been developed [137-139]. The free 
radical additions of fluorine-containing halides to 4-pentenamides 
in the presence of Na2S2O4 have also been studied [140]. 

A soluble ruthenium carbonyl hydride cluster is able to catalyze 
the hydrogenation of a succinic acid to a -hydroxyacid followed by 
ring closure in a one-step reaction with quantitative yields [141]. 

-Lactones are also accessible by a simple oxidation process 
from lactol acetals [142-147], or from free or protected 1,4-diols 
[148-152]. The most usual oxidants are Jones reagent, TPAP, PCC 
or NaIO4, but in some cases, ruthenium catalyst [153,154], 
TEMPO/NCS/R4NI [155,156] or the enzymatic process [157] are 
used. 4-Hydroxyvinyl carbamates may undergo epoxidation, rear-
rangement and oxidation of -lactols as a new stereoselective syn-
thesis of bicyclic -lactones. Previous access to vinyl carbamates 
from asymmetric homoaldol reactions offered high enantioselective 
products [158,159]. More specific oxidation reagents were used 
either from 4-nitro alcohols [160], 4-keto-1,5-diols in tricyclic de-
rivatives to obtain diquinane-based symmetric bis- -lactones [161] 
or 1-hydroxy-protected-4-en olefines, which were cleavaged to 
carboxylic acid by RuO4 [162]. 

A new strategy to transform bicyclic and tricyclic -lactones to 
-hydroxy- , -ketophosphonates into fused -lactones via a Wolff 

rearrangement/cyclization [163], or by a rhodium (II)-catalyzed O-
H insertion process [164], has been developed. 

Two different approaches of the hydroxyalkynyl systems have 
been developed in recent years (Scheme 10). Sato et al. [165] used 
3-alkoxy-2-propyn-1-ylcarbonates to generate alkoxyallenes, such 
as the homoenolate equivalent, which reacts with aldehydes to yield 
-lactones. Liu et al. [166,167] used the alkenylation of MOM de-

rivatives by chiral alkynyl tunsteng species with alkynylaldehydes 
and BF3

.Et2O as the key step. This method provides an easy entry 
into (-)-Litsenolide and (+)-Isodihydromahubanolide A. 

Cyclopentenones can be transformed into -lactones by the 
chiral Ti(O-iPr)4/tartaric ester t-BuOOH complex in an oxidative 
process to produce moderate yields. Indeed, the process is highly 
enantioselective (93-99% e.e.) [168]. 
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Scheme 9. Fused tricyclic -lactones mediated by manganase (III) acetate. 
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The last procedure in this group is that described by Kita et al. 
[169] and Iida et al. [170]. They developed a mild and clear direct 
oxidative C-H lactonization of both aliphatic carboxylic and ben-
zoic acids based on a selective benzylic C-H abstraction strategy, 
leading to biologically important aryl lactones, by using a combina-
tion of hypervalent iodine (III) reagents with KBr. 

4.2. -Lactones by C-O Cyclization after C4-C5 Bond Forma-

tion 

As we have just seen, in most cases it is necessary to have an X 
group at the -position (C5) to complete the cyclization to -
lactones. The nucleophilic attack of a suitable substrate to a car-
bonyl group leads to a hydroxyl group at this position. Different 
kinds of esters can be deprotonated or lithiated at the -position to 
their carbonyl group. The carbanion formed can react with different 
aldehydes and ketones and will produce several -lactones (Scheme 
11). 
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Scheme 11. -Lactones from -deprotonated esters. 

Pohmakotr et al. showed that the vicinal dianions derived from 
-arylsuccinic esters react with carbonyl compounds in a regiose-

lective way at the -carbon in the presence of ZnCl2 to furnish -
aryl- -butyrolactones with moderate yields [171,172]. 

Starting with -lithiopropionate derivatives, Yus and Pastor ob-
tained the expected 3,5 or 5-substituted- -butyrolactones by a reac-
tion with different aldehydes and 5,5-disubstituted ones either by a 
reaction with ketones [173] or using a lithiated orto-ester [174, 
175]. 

By using a , -epoxyester, deprotonation takes place in a 
stereoselective manner to provide the corresponding oxiranyl “re-
mote” anion. The generation and reactions of these novel anions 
were developed by Thebtaranonth et al. [176,177]. These authors 
concluded that the anions formed were stabilised by chelation be-
tween the lithium and carbonyl moiety ester. These oxiranyl anions 
underwent a consecutive aldol-lactonization reaction with adehydes 
to provide the corresponding epoxilactones. 

Prior to lithium-ester chelation and stabilization, Florio et al. 
found that -aryl oxazolinyloxiranes were stereospecify -lithiated 
thanks to intramolecular chelation. The trapping reaction of such 

reactive intermediates with carbonyl compounds gave , -epoxy- -
butyrolactones after deblocking the oxazoline moiety [178,179]. 
This methodology has been successfully extended to the prepara-
tion of optically pure , -epoxy- -butyrolactones from optically 
pure epoxides (Scheme 12). 

With oxazolinylaziridines, the same authors prepared , -
azirido- -lactones with a similar methodology. In this case, the 
chemical and configurational stability of the lithiated species de-
pend on the N-substituent in the aziridine ring [180]. 

Within the context of aldol type reactions, we should mention 
Maycock et al. who described the stereospecific reaction of lithium 
enolates derived from the thioester of tartaric acid acetal with a 
selection of aliphatic and aromatic aldehydes. Good chemical yields 
and high stereoselectivity were achieved [181]. 

Kumar et al. [182] described the glyoxalic, phenylglyoxalic and 
piruvic acids Indium-mediated allylation with allyl and cinnamyl 
bromides and ethyl 4-bromocrotonate to provide the respective 2-
allyl derivatives of such 2-oxocarboxylic acids. The reactions fol-
low Cram’s chelation model with Indium and give syn addition 
products as the major or sole products. As regards the reactions 
with cinnamyl bromide and ethyl bromocrotonate, allylation pro-
ceeds with high -regio and diastereoselectivities. These Z-allyl 
derivatives undergo diastereoselective iodocyclizations and provide 
3-hydroxy- -lactones with OH and CH2I moieties placed syn to 
each other as the major product (Scheme 13). 
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When this reaction is applied to 2-oxoglutaric acid [183,184], it 
leads to 2-(1-phenylallyl)- and 2-[(1-ethoxycarbonyl)allyl]- -
lactone derivatives, which undergo an intramolecular iodocycliza-
tion to provide bilactones with a 72%-83% yield. 

Naito et al. extended the usefulness of Oppolzer’s camphorsul-
tam as a quiral inducer by developing a tandem radical-addition-
aldol-type reaction of an , -unsaturated oxime ether with alde-
hydes mediated by Me3Al and Et3B [185] (Scheme 14). 

Another radical addition followed by aldol condensation is that 
described by Bertrand et al. [186,187]. In this case, the authors 
described a ZnR2-mediated radical addition to chiral N-
enoyloxazolidinones ( , -unsaturated diamides) in the presence of 
benzaldehyde. Diastereoselectivity was sensitive to the nature of 
both the substrate and radical. Continuing with radical alkylations, a 
different aldol-type methodology to build the carbon skeleton 
through C4-C5 bond formation is the use of a Michael-type reac-
tion. Fagnoni et al. developed a convenient route to -lactols and -
lactones through a radical alkylation of , -unsaturated aldehydes 
in organic and organic-aqueous media [188]. By using alcohols as 
radical precursors, the radical formed by hydrogen abstraction with 
an excited sensitizer attacks the electrophilic olefin at the -position 
and finally yields the correspondent -hydroxy aldehyde that leads 
to the desired -lactol which, without isolation, may be oxidized to 
-lactones by Br2, BaCO3. 

Alternatively, Steckhan et al. [189] showed that when -
hydroxyalkylsilanes were used as radical precursors, -cyano- -
lactones were obtained with the addition of -hydroxyalkyl radicals 
to methyl acrylates. -Hydroxyalkylsilanes allowed a one-step 
generation of substituted -lactones via a PET catalyzed generation 
of -hydroxyl radicals and their addition to electron-poor methyl 
acrylates. 

Another new methodology worthy of mention is reductive cou-
pling induced by SmI2. Lin et al. developed a SmI2-induced reduc-
tive coupling of chiral 2-alkyl acrylates derived from Isosorbide 
with several ketones. This reaction takes place through the protona-
tion of Samarium enolate. Therefore, a combination of a chiral 2-
alkylacrylate and a hindered proton source is crucial for the success 
of the asymmetric synthesis [190,191]. The use of (-)-2,10-
camphorsultam as a proton source has given the best e.e. values 
[192], and there is also the possibility of using a carbohydrate-
derived amide as both a chiral auxiliary and a proton source which 
has also obtained good results [193,194] (Scheme 15). 

Using N,N-dibenzyl-protected (S)- -amine aldehydes and 
(1S,2R)-N-methyl-ephedrinylacrylate, Fukuzawa et al. synthetized 
-aminoalkyl-substituted -butyrolactones with the same methodol-

ogy and obtained good yields and high diastereoselectivities [195]. 

Procter et al. applied this methodology to couple ketones and -
alkoxyacrylates in the synthesis of an antifungal -butyrolactone 
[196]. By using an ephedrine chiral linker, the authors developed a 
solid-phase alternative [197,198]. Padrón et al. applied this meth-
odology to the synthesis of cis- -alkoxy- -alkyl- -lactones [199] as 
novel antitumour compounds. 

A different approach to -lactones used by several authors is the 
N-heterocyclic carbene-catalized generation of homoenolates. They 
act as a nucleophilic reactive with another aldehyde or ketone to 
give adducts able to direct intramolecular cross-linking. Bode [200] 
and Burstein et al. [201,202] described this process specifically for 

, -unsaturated aldehydes or ketones, while Nair et al. obtained 
either spiro -butyrolactones in the reaction of enols and 1,2-
dicarbonyl compounds [203], or 4,5,5-trisubstituted -lactones 
when diaryl-1,2-diones were used as an electrophile [204]. Zhai et 
al. described the same reaction from benzoins [205] (Scheme 16). 
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Scheme 14. Tandem radical-addition-aldol type reaction of an , unsaturated oxime ether with aldehydes. 
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Scheme 15. Reaction of , unsaturated esters with ketones in a SmI2-mediated reductive coupling. 
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Scheme 16. N-Heterocyclic carbene-catalyzed generation of homoenolates: direct way to -lactones. 
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Two other procedures may be mentioned in this subchapter: the 
stereoselective synthesis of pentacarbonyl(3-oxa-2-bicyclo[3.1.0] 
hexylidene)tungsten compounds on the route to cyclopropane- -
lactones [206] and the setereoselective synthesis of trans- -
substituted- -ferrocenyl- -lactones via ammonium ylides [207]. 
Moderate to good yields were obtained, and a mechanistic study 
was described. 

4.3. -Lactones by C-O Cyclization after C3-C4 Bond Forma-
tion 

Taylor et al. obtained highly substituted lactones from ester 
enolates and 1,2-dioxines as masked cis- hydroxy enones. This 
reaction afforded good yields and a high diastereoselectivity was 
obtained as a result of an anti 1,4-addition [208]. 

The ring opening of epoxides with enolates, in the presence of a 
Lewis acid, is a useful reaction to generate lactones (Scheme 17). 
Sai i  et al. used TiCl4 to promote the reaction of silyl ketene 
acetals with epoxides, followed by an acidic work-up, which af-
forded butanolides with moderate yields. The reaction was regiose-
lective with epihalohydrins, and occurred at the less substituted end 
of the epoxide [209,210]. By using the dianion of carboxylic acids 
methodology with previously activated epoxides with LiCl as a 
Lewis acid, Parra et al. obtained good yields, but low diastereose-
lectivitities, in the synthesis of the corresponding lactones 
[211,212].  

R
OR1

O O

R3R2
O

O
R

R2

R3

+

R1 = Me 
[181,182]
R1 = H    [183]  

Scheme 17. Ring opening of epoxides with esters or acids. 

These reactions may also be done by using others enolates as 
nucleophiles. Jacobsen and Movassaghi described a new route to 

butanolides in a single step. They used 1-morpholino-2-
trimethylsilyl acetylene and terminal epoxides as starting materials 
with BF3·OEt2 as the Lewis acid [213]. The cyclic keteneaminals 
intermediate in the ring-opening of epoxides with 1-morpholino-2-
trimethylsilyl acetylene provides an opportunity for the direct syn-
thesis of more highly functionalized butanolides by simply 
changing the work-up. This reaction provides good yields and af-
fords high enantiomeric excess. 

Manganese(III) acetate was found to be a good initiator for the 
radical addition of enolizable compounds to alkenes. Brun et al. 
carried out the addition of malonic acid to cinnamic esters, a one-

step reaction that provides functionalized trans-4,5-disub-
stituted butyrolactones with low and moderate yields [214]. 

Biermann and Metzger used halocarboxylic acids esters in-
stead of malonic acid. In this case, the reaction was initiated by an 
electron transfer from copper and the authors described similar 
results. Furthermore, the reaction was applied to intramolecular 
cyclations using SnCl2/AgOAc as an initiator to obtain better results 
[215]. 

By applying a similar process to the Kharasch reaction, Shvo 
and Somech designed a synthetic route to substituted 

butyrolactones from alkenes and , -dichloroesters in the pres-
ence of CuCl in catalytic amounts and Fe(0) in stoichiometric 
amounts [216]. The conversion of this reaction was high, although 
bis-lactones may form as secondary products. 

Quayle et al. proved that atom transfer cyclization reactions 
(ATRC) may be used in the rapid and stereoselective synthesis of 
functionalized lactones [217]. By using 3-phenylprop-2-enyl 
trichloroacetate derivates and CuCl/dHbipy in catalytic amounts, 
they obtained 3,3-dichloro lactones with good yields, but with 
poor diastereoisomeric excess. 

Diels-Alder reactions may be also used for the synthesis of 
lactones. Wada et al. developed a tandem reaction of (E)-1-

ethoxy-2-nitroethylene with , -unsaturated alcohols using a cata-
lytic amount of Lewis acid, such as Yb(OTf)3 and Ni(ClO4)2·6H2O. 
The products of this reaction were trans-fused bicyclic lactones. 
This process involved the stereoselective tandem transetherifica-
tion-intramolecular hetero Diels-Alder reaction, leading to bicyclic 
nitronates and the sequential transformation of the nitronate moiety 
to lactone with good yields [218] (Scheme 18). 

Finally, two research groups worked on obtaining amino 
lactones. Li et al. reported the formation of these lactones by an 

InCl3-mediated or Sc(OTf)3-catalyzed three-component reaction: 
alkenes, glyoxylates and amines, where the substitution of the start-
ing material highly influenced the yields [219]. Alternatively, Wang 
et al. found that Ytterbium(III) triflate can catalyze the electrophilic 
cyclization of some glyoxalate-derived unsaturated imines. These 
cyclization reactions gave exclusively fused amino lactone prod-
ucts with good stereoselectivity and moderate yields [220] (Scheme 
19). 

4.4. -Lactones by C-O Cyclization after C2-C3 Bond Forma-

tion 

Finally, we will consider C2-C3 bond formation before C-O cy-
clization. For this purpose, two different routes may be found in the 
literature: carbonylations and electrocyclic reactions. 
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Scheme 18. Synthesis of trans-fused bicyclic lactones. 
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Scheme 19. Synthesis of amino actones from glyoxylates. 
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Troisi et al. described how -(Heteroaryl)homoallylic alcohols 
underwent cyclocarbonylation reactions under the pressure of CO 
and H2, catalyzed by Pd(II) and complexed with phosphine ligands 
to give five- and six-membered lactones with moderate to good 
yields. Changes in pressure (generally 300 psi of CO and 300 psi of 
H2), reaction time or temperature do not affect the regiochemistry 
of these reactions. In contrast, lactones can be obtained regiose-
lectively by using toluene as a solvent and 1,4-bis(diphenyl-
phosphino)butane (DPPB) as a ligand, whereas five-membered ring 
products are obtained with CH2Cl2 as a solvent and BINAP as a 
ligand. lactones are formed with low diastereoselectivity 
(trans>cis) [221] (Scheme 20). 

Kitching et al. applied a similar methodology to ene-diols to 
obtain tetrahydrofuran-bicyclic- -lactones, and described a hydroli-
tic kinetic resolution of epoxides [222]. 

Schmidt et al. combined a Ru-catalyzed ring-closing metathesis 
with a Rhodium-catalyzed hydroformylation of homoallylic alco-
hols to lead to tetrahydropyran spirocyclic butyrolactones [223]. 

A route to the -lactone ring with atom economy is that involv-
ing a formal [2+2+1] cycloaddition of an alkene, a carbonyl com-
pound and CO. Crowe et al. described how this hetero-Pauson-
Khand reaction can convert , unsaturated ketones and aldehydes 
into bicyclic butyrolactone products [224]. They reported a gen-
eral catalytic cyclocarbonilation of enals and enones using a chiral 
ansa-titanocene catalyst. Diastereofacial selectivity was investi-
gated.  

Nevertheless, Murai et al. were the first to describe a catalytic 
synthesis of heterocycles via an intermolecular cabonylative 
[2+2+1] cycloaddition [225]. They demonstrated that Ru3(CO)12 
catalyzes the intermolecular cyclocoupling of ketones (or alde-
hydes), alkenes (or alkynes) and CO. They analyzed the differences 
caused by additive or substituent effects, along with the dependence 
of the reaction on parameters such as the pressure of ethylene and 
CO. This enabled them to propose two possible mechanisms 
(Scheme 21). 
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Scheme 21. [2+2+1] Ru3(CO)12-catalyzed intermolecular cyclocouplings. 

Woerpel et al. developed a stereoselective synthesis of 
lactones by a [3+2] annulation of allylic silanes with chlorosul-

fonyl isocyanate (CSI), and applied it to accomplish an enantiose-
lective total synthesis of (+)-Blastmycinone [226]. Their studies of 
reactivity of -silylmethyl-substituted allylic silanes in the [3+2] 
annulation reaction enabled them to find that a reaction with 
ClSO2NCO gave a N-Chlorosulfonyliminolactone as the major 
product. The hydrolysis of the intermediates afforded -lactones 
(Scheme 22). They also synthesized a series of allylic silanes to 
investigate competition between the annulation across the C=N and 
the C=O bond to develop the reaction into a route to -lactones. 

Finally, Rudler et al. described how the carbene carbon of 1,4-
alkene and alkyne carbene complexes of chromium and tungsten 
reacts with nucleophiles such as hydrides to give polycyclic lac-
tones upon CO and alkyne (or alkene) insertions [227]. 

5. MISCELLANEOUS 

The Baeyer-Villiger reaction is a useful methodology for the 
synthesis of -butyrolactones. Using cyclobutanones and applying 
different oxidative processes, butanolides can be obtained whilst 
preserving the stereochemistry of the starting material. The use of 
different oxidants and reaction conditions are continuously opti-
mized [228-236] and applied to the synthesis of natural products 
such as (±)-Asarinin, (±)-Epimagnolin A or (±)-Fargesin [237]. 

Spiroindolin-2-one lactones may be obtained via the oxida-
tive cleavage of indole lactones with m-chloroperbenzoic acid. 
The reaction was carried out with moderate yields [238] (Scheme 
23). 
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Scheme 23. Synthesis of spiroindolin-2-one -lactones. 

Lactones can also be obtained via lactones rearrangements. 
cis-Fused bicyclic lactones were prepared by Black in a three-
step sequence featuring the stereospecific rearrangement of spiro 
bicyclic lactones [239]. 
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Scheme 20. Cyclocarbonylation of (hydroxyl)homoallylic alcohols by Pd(II)/DPPB/CO/H2. 
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Scheme 22. [3+2] Annulation of allylic silanes with chlorosulfonyl isocyanate. 
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Fujimori et al. used di(2-azulenyl)ketene, generated by the 
thermal decomposition of diazodi(2-azulenyl)ethanone, and tropone 
in the formation of -lactones with good yields [240]. This forma-
tion can be explained by considering a two-step reaction mecha-
nism: a [2+2] addition and the subsequent [1,7] sigmatropic rear-
rangement (Scheme 24). 

Ethenetricarboxylate derivatives have been used as highly elec-
trophilic C2 components in  Lewis acid-promoted [2 + 2] and [2 + 
1] cycloadditions. With this approach, Yamazaki et al. described 
the synthesis of highly functionalized -lactones with heterogene-
ous results [241]. 

As a final approach, Cheng and Rayabarapu carried out the re-
action of dimethyl-7-oxabicyclo[2.2.1]-hept-5-ene-2,3-dicarboxy-
late with alkyl propiolates to afford the corresponding reductive 
coupling/cyclization products and bicycle[3.2.1] -lactones which 
resulted in good yields with a remarkably high regio- and stereose-
lectivity [242]. 
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Scheme 24. Reaction of di(2-azulenyl)ketene with tropone. 
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